

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

SULPHIDATION OF METALLIC MATERIALS

http://home.agh.edu.pl/~grzesik

Z. Grzesik and K. Przybylski, "Sulfidation of metallic materials" w "Developments in high temperature corrosion and protection of materials", Eds. Wei Gao and Zhengwei Li, Woodhead Publishing Limited, Cambridge England, 2008, str. 599-638.

Properties of selected metal sulfides and oxides

Sulfide	ΔG^0_{1273K}	ΔG_{1273K}^0 p_{S_2}		ΔG^0_{1273K}	p_{O_2}
Sunde	[kJ/mol S]	[Pa]	Oxide	[kJ/mol O]	[Pa]
Al_2S_3	-191	$2.4 \cdot 10^{-11}$	Al ₂ O ₃	-424	$1.8 \cdot 10^{-3}$
CoS	-43.8	26	CoO	-145	$1.2 \cdot 10^{-7}$
Cu ₂ S	-95.7	$1.4 \cdot 10^{-3}$	Cu ₂ O	-77.7	4.3.10-2
CuS	63.6	$1.6 \cdot 10^{10}$	CuO	-11.6	$1.1 \cdot 10^4$
FeS	-78.9	$2.9 \cdot 10^{-2}$	FeO	-179	$2.3 \cdot 10^{-1}$
MnS	-196.9	$7.3 \cdot 10^{-12}$	MnO	-292	$1.2 \cdot 10^{-1}$
MoS_2	-78.3	3.8·10 ⁻²	MoO_2	-182	$1.3 \cdot 10^{-1}$
NiS	-50.4	7.5	NiO	-127	3.8·10 ⁻⁶
TiS	-228	$2.1 \cdot 10^{-14}$	TiO	-420	3.9·10 ⁻³

www.agh.edu.pl

Α

Properties of selected metal sulfides and oxides

GH	Sulfide	Melting point	Oxide	Melting point	Sulfide	Melting point	Oxide	Melting point
		[K]		[K]		[K]		[K]
-	Al_2S_3	1373	Al ₂ O ₃	2288	 USa	1373	UO2	3151
	CoS	1389	CoO	2068	VaSa	1873	V ₂ O ₂	2683
	Co_3S_4	?	Co_3O_4	1223	I 253	965	I ₂ O ₃	1325
	Cr_2S_3	1623	Cr ₂ O ₃	2539	InsSa	1323	Ino	2273
	Cu ₂ S	1373	Cu ₂ O	1508		1323	III ₂ O ₃	2213
	CuS	376	CuO	1599				
	FeS	1472	FeO	1642				
	MnS	1598	MnO	2058				
	MoS_2	1458	MoO ₂	2200				
	NiS	1083	NiO	2230				
	TiS	2373	TiO	2023				
	TiS ₂	?	TiO ₂	2123				
	La_2S_3	2423	La_2O_3	2490				
	Ce_2S_3	2373	Ce ₂ O ₃	1965				
	ThS_2	2198	ThO ₂	3593				

AGH

Properties of selected metal sulfides and oxides

Metal	Sulfides	Oxides
Со	Co ₄ S ₃	CoO
	Co ₉ S ₈	Co_3O_4
	CoS	
	Co_3S_4	
	CoS_2	
Cr	CrS	Cr ₂ O ₃
	Cr_7S_8	
	Cr ₅ S ₆	
	Cr_3S_4	
	Cr_2S_3	
Ni	Ni_3S_2	NiO
	Ni ₇ S ₆	
	NiS	
	Ni ₃ S ₄	
	NiS ₂	

Deviation from stoichiometry in selected metal sulfides and oxides

Sulfide	У	Oxide	У
Co _{1-y} S	0.16	Co _{1-y} O	0.009
$Cr_{2+y}S_3$	0.18	Cr _{2-y} O ₃	0.00009
Cu _{2-y} S	0.17	Cu _{2-y} O	0.004
Fe _{1-y} S	0.24	Fe _{1-y} O	0.12
$Mn_{1-y}S$	0.002	Mn _{1-y} O	0.016
Ni _{1-y} S	0.17	Ni _{1-y} O	0.0006

www.agh.edu.pl

Deviation from stoichiometry in selected metal sulfides and oxides

www.agh.edu.pl

Chemical diffusion in selected metal sulfides and oxides

www.agh.edu.pl

Comparison between sulphidation and oxidation rates of different alloys

Comparison between sulphidation rates of different Ni alloys with Mo and Al

www.agh.edu.pl

Comparison between sulphidation rates of different Fe alloys with Mo and Al

www.agh.edu.pl

Sulphidation rates of several Ni and Fe alloys with Mo and Al

www.agh.edu.pl

Pressure dependence of the parabolic sulphidation rate constant of Mo in pure and Li₂S-containing sulfur vapors

Z. Grzesik, Journal of Solid State Electrochemistry, <u>13</u>, 1701-1708 (2009)

www.agh.edu.pl

Dependence of k_p on temperature for pure and lithium-doped manganese

www.agh.edu.pl

Dependence of k_p on temperature for pure and lithium-doped manganese

www.agh.edu.pl

THE END